Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Appl Opt ; 63(10): 2710-2718, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568556

RESUMO

Aimed at the regional open-path detection of benzene (C 6 H 6) in the atmosphere, a power-modulated integrated path differential absorption (PM-IPDA) lidar is introduced and demonstrated. Two tunable interband cascade lasers (ICLs) with about 3.2 µm wavelength are utilized to generate the required PM optical signal. These two operation central wavelengths (CWs) of the PM-IPDA lidar are, respectively, 3236.6 and 3187.1 nm, which can mitigate the influence of significant gases such as H 2 O, C H 4, and HCl on the detection performance. In this work, the fast Fourier transform algorithm is used to retrieve the measured values with the time resolution of 0.1 s corresponding to 104 sampling bins at the sampling rate of 100 kSps/s. The modulated frequency of the PM-IPDA lidar is selected as 10 kHz by laboratory experiments. The slow fluctuation characteristic of the benzene absorption spectrum within the vicinity region of 3.2 µm reduces the impact of small wavelength fluctuations on the performance of PM-IPDA lidar, although a scheme modulated only the driving current causes wavelength fluctuations of ∼±0.2n m. These laboratory experiments also indicate the PM-IPDA lidar can reduce the error resulting from 1/f noise. Open-path observation experiments show that the detection limit is about 0.60m g⋅m -3 and that the PM-IPDA lidar can be used for the regional open-path real-time detection of benzene.

2.
Front Psychol ; 15: 1309047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572211

RESUMO

Personal calibration is a process of obtaining personal gaze-related information by focusing on some calibration benchmarks when the user initially uses a gaze tracking system. It not only provides conditions for gaze estimation, but also improves gaze tracking performance. Existing eye-tracking products often require users to conduct explicit personal calibration first, thereby tracking and interacting based on their gaze. This calibration mode has certain limitations, and there is still a significant gap between theoretical personal calibration methods and their practicality. Therefore, this paper reviews the issues of personal calibration for video-oculographic-based gaze tracking. The personal calibration information in typical gaze tracking methods is first summarized, and then some main settings in existing personal calibration processes are analyzed. Several personal calibration modes are discussed and compared subsequently. The performance of typical personal calibration methods for 2D and 3D gaze tracking is quantitatively compared through simulation experiments, highlighting the characteristics of different personal calibration settings. On this basis, we discuss several key issues in designing personal calibration. To the best of our knowledge, this is the first review on personal calibration issues for video-oculographic-based gaze tracking. It aims to provide a comprehensive overview of the research status of personal calibration, explore its main directions for further studies, and provide guidance for seeking personal calibration modes that conform to natural human-computer interaction and promoting the widespread application of eye-movement interaction.

3.
Front Neurosci ; 18: 1308627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595969

RESUMO

Background: The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose: This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods: We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results: 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion: Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.

4.
Oncogene ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594503

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America. Current therapeutic regimens are ineffective against advanced EOC. A better understanding of the molecular mechanisms that regulate the biology of EOC will be a critical step toward developing more efficacious therapies against EOC. Herein, we demonstrate that elevated expression of transcription factor ZIC2 was associated with lower survival of EOC patients. Knockout of endogenous ZIC2 in EOC cells attenuated the tumorigenic phenotypes associated with both bulk and cancer stem cells in vitro and in vivo, indicating a pro-tumorigenic role of ZIC2 in EOC. On the other hand, however, overexpression of ZIC2 in EOC cells that do not express endogenous ZIC2 promoted cell migration and sphere formation, but inhibited cell growth and colony formation in vitro and tumor growth in vivo, indicating that the role for ZIC2 in EOC is context dependent. Our transcriptomic analysis showed that ZIC2-regulated genes were involved in multiple biological processes and signaling pathways associated with tumor progression. In conclusion, our findings reveal a context-dependent role for ZIC2 in regulating tumorigenic phenotypes in EOC, providing evidence that ZIC2 can be a potential therapeutic target for EOCs that express a high level of ZIC2.

5.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598148

RESUMO

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Assuntos
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálise , DNA
6.
Front Microbiol ; 15: 1380805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601927

RESUMO

Introduction: Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods: In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results: The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion: This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.

7.
Front Microbiol ; 15: 1366021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577687

RESUMO

4-Hydroxy-2,5-dimethyl-3 (2H)-furanone (HDMF) is widely used in the food industry as a spice and flavoring agent with high market demand. In this study, fructose-1,6-bisphosphate aldolase (FBA) and triose phosphate isomerase (TPI) were overexpressed in Zygosaccharomyces rouxii in the form of single and double genes, respectively, via electroporation. High-yield HDMF-engineered yeast strains were constructed by combining the analysis of gene expression levels obtained by real-time fluorescence quantitative PCR technology and HDMF production measured by HPLC. The results showed that there was a significant positive correlation between the production of HDMF and the expression levels of the FBA and TPI genes in yeast; the expression levels of the FBA and TPI genes were also positively correlated (p < 0.05). Compared with the wild type (WT), the engineered strains F10-D, T17-D, and TF15-A showed marked increases in HDMF production and FBA and TPI gene expression (p < 0.05) and exhibited great genetic stability with no obvious differences in biomass or colony morphology. In addition, the exogenous addition of d-fructose promoted the growth of Z. rouxii. Among the engineered strains, when fermented in YPD media supplemented with d-fructose for 5 days, TF15-A (overexpressing the FBA and TPI genes) generated the highest HDMF production of 13.39 mg/L, which is 1.91 times greater than that of the wild-type strain. The results above indicated that FBA and TPI, which are key enzymes involved in the process of HDMF biosynthesis by Z. rouxii, positively regulate the synthesis of HDMF at the transcriptional level. d-fructose can be used as a precursor for the biosynthesis of HDMF by engineered yeast in industrial production.

8.
Sci Rep ; 14(1): 8413, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600137

RESUMO

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Assuntos
Antioxidantes , Probióticos , Streptococcus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Linoleico , Lipopolissacarídeos , Probióticos/metabolismo , Radical Hidroxila , Superóxido Dismutase , Ácido Láctico/metabolismo
9.
Plant Physiol Biochem ; 210: 108651, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38653098

RESUMO

Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.

10.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654216

RESUMO

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Assuntos
Dano ao DNA , Melanoma , Microambiente Tumoral , Neoplasias Uveais , Animais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade , Camundongos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/terapia , Células-Tronco Embrionárias/metabolismo , Reparo do DNA por Junção de Extremidades , Linhagem Celular Tumoral , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico , Masculino , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Transdução de Sinais , Reparo do DNA
11.
Phytomedicine ; 128: 155341, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38518636

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38532215

RESUMO

Imazethapyr is a widely used imidazolinone herbicide worldwide, and its potential adverse effects on non-target plants have raised concerns. Understanding the mechanisms of imazethapyr phytotoxicity is crucial for its agro-ecological risk assessment. Here, the comprehensive molecular responses and metabolic alterations of Arabidopsis in response to imazethapyr were investigated. Our results showed that root exposure to imazethapyr inhibited shoot growth, reduced chlorophyll contents, induced photoinhibition and decreased photosynthetic activity. By non-target metabolomic analysis, we identified 75 metabolites that were significantly changed after imazethapyr exposure, and they are mainly enriched in carbohydrate, lipid and amino acid metabolism. Transcriptomic analysis confirmed that imazethapyr significantly downregulated the genes involved in photosynthetic electron transport and the carbon cycle. In detail, 48 genes in the photosynthetic lightreaction and 11 genes in Calvin cycle were downregulated. Additionally, the downregulation of genes related to electron transport in mitochondria provides strong evidence for imazethapyr inhibiting photosynthetic carbon fixation and cellular energy metabolism as one of mechanisms of toxicity. These results revealed the molecular and metabolic basis of imazethapyr toxicity on non-target plants, contributing to environmental risk assessment and mitigate negative impact of imazethapyr residues in agricultural soils.

13.
iScience ; 27(4): 109449, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38551002

RESUMO

MicroRNAs (miRNAs) interact with mRNAs in various pathophysiological processes. In developmental dysplasia of the hip (DDH), the miRNA-mRNA pairs affecting acetabular cartilage (AC) development remain unknown. We investigated dynamic microstructure changes and mRNA and miRNA expression profiles in the AC proliferative zone in a DDH rat model. Abnormal chondrocyte proliferation was observed, and several differentially expressed mRNAs and miRNAs were identified. Downregulated mRNAs and target genes of upregulated miRNAs were primarily enriched in bone and cartilage development. Six hub genes were identified using the predicted miRNA-mRNA interaction network and gene expression pattern analysis. The expression levels of these hub genes and paired miRNAs aligned with our predictions, and most of the pairs were significantly negatively correlated. Excessive chondrocyte proliferation in the AC proliferative zone can delay AC ossification, which might be crucial to DDH development. Specific miRNA-mRNA interaction pairs may serve as diagnostic biomarkers and therapeutic targets.

14.
Nat Chem ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459235

RESUMO

Stimuli-responsive hydrogels with programmable shape changes are promising materials for soft robots, four-dimensional printing, biomedical devices and artificial intelligence systems. However, these applications require the fabrication of hydrogels with complex, heterogeneous and reconfigurable structures and customizable functions. Here we report the fabrication of hydrogel assemblies with these features by reversibly gluing hydrogel units using a photocontrolled metallopolymer adhesive. The metallopolymer adhesive firmly attached individual hydrogel units via metal-ligand coordination and polymer chain entanglement. Hydrogel assemblies containing temperature- and pH-responsive hydrogel units showed controllable shape changes and motions in response to these external stimuli. To reconfigure their structures, the hydrogel assemblies were disassembled by irradiating the metallopolymer adhesive with light; the disassembled hydrogel units were then reassembled using the metallopolymer adhesive with heating. The shape change and structure reconfiguration abilities allow us to reprogramme the functions of hydrogel assemblies. The development of reconfigurable hydrogel assemblies using reversible adhesives provides a strategy for designing intelligent materials and soft robots with user-defined functions.

15.
Plant Physiol Biochem ; 208: 108481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447424

RESUMO

Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.


Assuntos
Arabidopsis , Gravitropismo , Cálcio , Raízes de Plantas/fisiologia , Arabidopsis/fisiologia , Ácidos Indolacéticos , Plantas , Amido
16.
Aging (Albany NY) ; 16: 5264-5287, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466642

RESUMO

Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan-Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate 'protein neddylation', 'protein deneddylation', and 'protein ubiquitination'. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Complexo do Signalossomo COP9/genética , Prognóstico , Neoplasias Hepáticas/genética , Núcleo Celular , Carcinogênese/genética , Proteínas Adaptadoras de Transdução de Sinal
17.
ACS Appl Mater Interfaces ; 16(11): 14364-14370, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441873

RESUMO

Motivated by the recent experimental synthesis of a LaCl3-based lithium superionic conductor [Yin, Y.-C. Nature 2023, 616, 77-83], we explore the potential of a LaCl3-based system for a sodium superionic conductor in this work. Using density functional theory combined with molecular dynamics simulation and a grand potential phase diagram analysis, we find that the resulting Na3La5Cl18 exhibits high energetic stability with a small energy-above-hull of 18 meV per atom, a large band gap of 5.58 eV, a wide electrochemical window of 0.41-3.76 V from the cathodic to the anodic limit, and a high Na+ conductivity of 1.3 mS/cm at 300 K. Furthermore, Na3La5Cl18 shows high chemical interface stability with the reported high-potential cathode materials such as NaCoO2, NaCrO2, Na2FePO4F, Na3V2(PO4)3, and Na3V2(PO4)2F3. These findings clearly suggest that the LaCl3-based framework can be used as a building block not only for Li-ion but also for Na-ion batteries.

18.
Front Pharmacol ; 15: 1372766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469405

RESUMO

Cardiovascular disease (CVD) is a serious public health problem, and among non-communicable diseases, CVD is now the leading cause of mortality and morbidity worldwide. CVD involves multiple organs throughout the body, especially the intestinal tract is the first to be involved. The impairment of the intestinal mucosal barrier is considered a significant pathological alteration in CVD and also contributes to the accelerated progression of the disease, thereby offering novel insights for CVD prevention and treatment. The treatment of Chinese medicine is characterized by multi-metabolites, multi-pathways, and multi-targets. In recent years, the studies of Traditional Chinese Medicine (TCM) in treating CVD by repairing the intestinal mucosal barrier have gradually increased, showing great therapeutic potential. This review summarizes the studies related to the treatment of CVD by TCM (metabolites of Chinese botanical drugs, TCM formulas, and Chinese patent medicine) targeting the repair of the intestinal mucosal barrier, as well as the potential mechanisms. We have observed that TCM exerts regulatory effects on the structure and metabolites of gut microbiota, enhances intestinal tight junctions, improves intestinal dyskinesia, repairs intestinal tissue morphology, and preserves the integrity of the intestinal vascular barrier through its anti-inflammatory, antioxidant, and anti-apoptotic properties. These multifaceted attributes position TCM as a pivotal modulator of inhibiting myocardial fibrosis, and hypertrophy, and promoting vascular repairment. Moreover, there exists a close association between cardiovascular risk factors such as hyperlipidemia, obesity, and diabetes mellitus with CVD. We also explore the mechanisms through which Chinese botanical drugs impact the intestinal mucosal barrier and regulate glucose and lipid metabolism. Consequently, these findings present novel insights and methodologies for treating CVD.

19.
J Ethnopharmacol ; 326: 117995, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38428656

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY: This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS: A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS: AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-ß/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS: This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.


Assuntos
Adenoma , Colite , Neoplasias Colorretais , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Ratos , Animais , Camundongos , Receptores Ativados por Proliferador de Peroxissomo , RNA Ribossômico 16S , Cromatografia Líquida , Espectrometria de Massas em Tandem , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/patologia , Transdução de Sinais , Carcinogênese , Azoximetano/toxicidade , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Homeostase , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
20.
Langmuir ; 40(14): 7268-7285, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38395626

RESUMO

It is well-established that interfaces play critical roles in biological and synthetic processes. Aside from significant practical applications, the most accessible and measurable quantity is interfacial tension, which represents a measure of the energy required to create or rejoin two surfaces. Owing to the fact that interfacial processes are critical in polymeric materials, this review outlines recent advances in dynamic interfacial processes involving physics and chemistry targeting self-healing. Entropic interfacial energies stored during damage participate in the recovery, and self-healing depends upon copolymer composition and monomer sequence, monomer molar ratios, molecular weight, and polymer dispersity. These properties ultimately impact chain flexibility, shape-memory recovery, and interfacial interactions. Self-healing is a localized process with global implications on mechanical and other properties. Selected examples driven by interfacial flow and shape memory effects are discussed in the context of covalent and supramolecular rebonding targeting self-healable materials development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...